The Only Native GPU Platform
For Thin Film Optimization

Accelerate your Thin Film Design Process and reduce time-to-market
while ensuring compliance with key requirements.

Technical

Capabilities

Dispersion Models

Real:

okayindication

Constant:
n=A_0

okayindication

Cauchy:
n(\lambda_0)=A_0+\sum_{i=1}^nB_i\lambda_0^{Ci}

okayindication

Conrady:
n(\lambda_0) = A_0+\frac{A_1}{\lambda_0}+\frac{A_2}{\lambda_0^{3.5}}

okayindication

Exotic:
n^2(\lambda_0) = A_0+\frac{A_1}{\lambda_0^2-A_2}+\frac{A_3(\lambda_0-A_4)}{(\lambda_0-A_4)^2+A_5}

okayindication

Gases:
n(\lambda_0)-1=A_0+\sum_{i=0}^n\large\frac{B_i}{C_i-\lambda_0^{-2}}

okayindication

Lorentz-Drude:
\Re(\epsilon_r(\omega)) = \epsilon_r(\infty)+\omega_p^2\sum_{i=1}^M\frac{f_i}{\omega_{0,i}^2-\omega^2+\jmath\omega\Gamma_i}

okayindication

Hartmann:
n(\lambda_0) = A_0+\frac{A_1}{\lambda_0-A_2}

okayindication

Hartmann-Modified:
n(\lambda_0) = A_0+\frac{A_1}{(\lambda_0-A_2)^2}

okayindication

Herzberger:
n(\lambda_0) = A_0+\frac{A_1}{\lambda_0^2-0.028}+A_2(\frac{1}{\lambda_0^2-0.028})^2+A_3\lambda_0^2+A_4\lambda_0^4+A_5\lambda_0^6

okayindication

Schoitt-Briot:
n^2(\lambda_0)=A_0+A_1\lambda_0^2+\sum_{i=1}^n\large\frac{B_i}{\lambda_0^{2i}}

okayindication

Sellmeier:
n^2(\lambda_0)=A_0+\sum_{i=0}^n\large\frac{B_i\lambda_0^2}{\lambda_0^2-C_i}

okayindication

Sellmeier-Modified:
n^2(\lambda_0)=A_0+\sum_{i=0}^n\frac{B_i\lambda_0^2}{\lambda_0^2-C_i^2}

okayindication

Polynomial:
n^2(\lambda_0) = A_0+\sum_{ i = 1 }^n\large B_i\lambda_0^{ C_{ i } }

okayindication

RefractiveIndexInfo:
n^2(\lambda) = A_0+\frac{B_1\lambda_0^{C_1}}{\lambda_0^2-B_2^{C_2}}+\frac{B_3\lambda_0^{C_3}}{\lambda_0^2-B_4^{C_4}}+B_5\lambda_0^{C_{5}}+B_{6}\lambda_0^{C_{6}}+B_{7}\lambda_0^{C_{7}}+B_{8}\lambda_0^{C_{8}}

okayindication

Datatable

Imaginary:

okayindication

Non-Absorptive:
k=0

okayindication

Constant:
k=A_0

okayindication

Cauchy:
k(\lambda_0)=A_0e^{A_1(\frac{1}{\lambda_0}-\frac{1}{A_2})}

okayindication

Exponential:
k(\lambda_0)=A_0e^{\frac{A_1}{\lambda_0}+A_2\lambda_0}

okayindication

Lorentz-Drude:
\Im(\epsilon_r(\omega)) = \epsilon_r(\infty)+\omega_p^2\sum_{i=1}^M\frac{f_i}{\omega_{0,i}^2-\omega^2+\jmath\omega\Gamma_i}

okayindication

Polynomial:
k(\lambda_0)=A_0+\sum_{i=1}^nB_i\lambda_0^{Ci}

okayindication

Sellmeier:
k(\lambda_0)={\frac{A_0}{A_1A_2+\frac{A_3}{\lambda_0}+\frac{1}{\lambda_0^3}}}

okayindication

Datatable

Optical Characteristics

Conventional:

okayindication

R — Reflectance (s-pol, p-pol, avg)

okayindication

T — Transmittance (s-pol, p-pol, avg)

okayindication

A — Absorptance (s-pol, p-pol, avg)

Phase:

okayindication

pR — Phase Shift on Reflection (s-pol, p-pol,)

okayindication

pT — Phase Shift on Transmission (s-pol, p-pol)

okayindication

GDR —Group Delay on Reflection (s-pol, p-pol)

okayindication

GDT —Group Delay on Transmission (s-pol, p-pol)

okayindication

GDDR — Group Delay Dispersion on Reflection (s-pol, p-pol)

okayindication

GDDT — Group Delay Dispersion on Transmission (s-pol, p-pol)

Layer-Specific:

okayindication

LA — Layer Absorptance (s-pol, p-pol, avg)

okayindication

LOA — Local Absorption (s-pol, p-pol, avg)

okayindication

E — Electric Field (s-pol, p-pol, avg)

Merit Formulas

okayindication

Quadratic :
F=\sqrt{\frac{1}{m}\sum_{i =1}w_i\lbrack\frac{S_i-\hat{S_i}}{\Delta_T}\rbrack^2}

okayindication

Absolut:
F=\frac{1}{m}\sum_{i =1}w_i\lbrack\frac{\vert{S_i-\hat{S_i}\vert}}{\Delta_T}\rbrack

okayindication

Max:
F=\max{\lbrack{w_i}\frac{\vert{S_i-\hat{S_i}\vert}}{\Delta_T}: 1..m\rbrack}

Coherence Models

okayindication

Coherent Stack — All optical characteristics.

okayindication

Incoherent Stack — R/T/A.

okayindication

Hybrid (Mixed) Stack R/T/A.

Algorithms

Refinement:

okayindication

Adam — Adaptive Momentum Estimation

okayindication

ClusterRefinement — Proprietary, optimizes clusters of layers.

Synthesis:

okayindication

Needle — Inserts a zero thickness layer at optimal position followed by a refinement algorithm.

okayindication

AnyNeedle — Propietary, inserts a finite thickness layer at optimal position.

Global Optimization:

okayindication

BranchAndBound — Global optimizer with mathematical guarantees regarding global optimality

okayindication

ParticleSwarmOptimization — A population-based global optimizer that guides a swarm of candidate solutions through the search space using individual and social intelligence

okayindication

Stochastic — Stochastic global optimizer

How It Works

Datamanagement

FilmOptima employs a relational SQL database to ensure data integrity and efficient storage. This structure normalizes data, meaning common entities like general targets or materials are stored only once and referenced across multiple user designs. To preserve data consistency, the system prevents modifications to any entity that is actively referenced in other designs, preventing unintended cascading effects.

Flexible Optimization Control

FilmOptima puts you in complete control of the optimization process. Define your goals (e.g., max layers, max optimization duration) as stopping conditions, and hand-pick the algorithms to use. Our engine runs your chosen algorithms in round-robin manner, and intelligently concludes the process when no further improvements can be made. You dictate the “how” and “when” of perfecting your design.

Hands-Free Queue

FilmOptima allows you to queue multiple designs for sequential processing, perfect for running long optimizations overnight or while you focus on other tasks. Maximize your productivity by submitting optimization tasks to run automatically. You can even test and compare different optimization strategies on the same design by adding them to the queue, revealing the most effective approach.

Scroll to Top